1. (20 points) Determine whether the following statements are true or false.
If true then prove it, and if false then provide a counterexample.

a
(1) Suppose that the sequences {a, } and {b, } are convergent. Then, { 2 _T_ 1 }
is also convergent. "

(2) Suppose that a continuous function f(z) is defined on (1,400). Then,
1
lim —f(z) =0 holds.

Tr—4oco I

Proof for (1). False. Let a,, = —1 and b, = —1 + % Then, they converges

to —1. However, baﬁ = —n — —o0. O
n

Proof for (2). False. f(z) = z is continuous, but X f(z) = 1. O
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2. (25 points) Let apy1 = (“7") 2 and 0 < aqp < 8. Prove that the sequence
{an} is convergent, and the limit is 0.

Proof. We have a1 = (ao/Q)% > (0. Moreover,

(a1)? = (a0/2)* = (a0)*(ao/8) < (ao)?,
yields a1 < ag < 8.

e

Assume 0 < ay, < 8 for some k € N. Then, we have ai11 = (ar/2)2 > 0.

Moreover,

(ar11)” = (ar/2)* = (ar)*(ax/8) < (ar)?,
yields agy1 < ap < 8.

Thus, by the mathematical induction, we have 0 < a, < ag < 8 for
all n € N and an4+1 < ap. Since a, is decreasing and bounded below, a,
converges to a limit L by the completeness property. In addition, by the
limit location theorem, we have 0 < L < ag < 8.

Now, by using (a,+1)? = (an)3/8 and Theorem 5.1, we have
L? = lim(any1)? = lim(a,,)®/8 = L3/8.
Hence, we have L?(L — 8) = 0, namely L = 0 or 8. However, L < ag < 8

implies L # 8, and thus L = 0.
O



3. (25 points) Let 2a,41 =
-1+ /3
—

and ag > 0. Prove that it is convergent,
1+ a,

and the limit is

Proof. We first observe 2a; = ﬁ > 0. If ar > 0 for some k € N, then

2a541 = ﬁ > 0. So, by the mathematical induction, we have a, > 0 for
all n € N. Next,

|2 2 | 1 1 ‘ an+1 - G/TZ

a — za == — =

e il 1+ An+1 1+ (7% (1 + an—l—l)(l + an)
’an—‘rl - an‘

= < |a — Anl.
T+ )Lt ay)  amet — anl

Namely, |an12 — ani1] < 27 a1 — an|. Assume
—k
’an+k+1 - an+k‘ <2 ‘an—&—l - an‘
for some k € N. So, by the mathematical induction, for all n,m € N
|an4mt1 = Gngm| < 27" |an41 — anl.

Therefore, for m,n € N with m > n, we have

m—n—1 m—n—1
|am — an| = Z (@nsks1 — anJrk)‘ < Z |antks1 — ani|
k=0 k=0
m—n—1 m—n—1
< Z 2_k|an+1 - an| = |an+1 - an| Z 27k,
k=0 k=0

Since 3" 27% is a geometric series, we have

m—n—1

1 — 2 (m=n) 1
-k __ _
;2 = o <7 =2

Namely,
2la; — ag|
2n )

Define a constant M = 1+ 2|a; — ag|. Then, |a,, — a,| < ZMN for myn > N.

Given any € > 0, we choose a large natural number N > log, (M /e€). Then,
we have |a,, — a,| < € for m,n > N. Namely, a,, is a Cauchy sequence, and
thus it converges to a limit L.

By using % = ap+1(1 + an) and Theorem 5.1, we have

|am — an| < 2|an+1 — an| <

1
5= lim ay,11(1 4 ap,) = limay, 11 + (lima,,1)(lima,) = L + L?.

Hence, solving the quadratic equation yields L = %\/g Since a,, > 0, by

the limit location theorem, we have L > 0. Thus, L = _1%\/5
O



o
4. (10 points) Find the radius of convergence of the power series Z(n!)x",

n=0
and explain why.

Proof. Given x # 0, we define a,, = (n!)z™. Then, we have

A1 (n + 1)!|z|?*t

= = 1 > 1,
for all n > |xz|7!. We choose a natural number N such that N > |z|~1.
Then, for n > N we have

n—1 a n—1
lan| = |ay| H ’ SH‘ = o H 1 =lan| >0,
=N Ok k=N

namely a, can NOT converge to 0. Hence, by the test for divergence, a,,
diverges.

On the other hand, if x = 0 the power series clearly converges to 0. Thus,
the radius of convergence is 0. (]
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5. (20 points) Continuous functions f(z) and g(z) are defined for z= €
(0,400). Let {an}n>1 be a positive increasing sequence tending to +oo
with an4+1 < an + 1. Suppose that

flan/m) = g(an/m)
holds for all natural numbers n,m € N. Then, Prove that f(x) = ¢g(z) holds
for all z € R.

Proof. Since a,, tends to +o0, given x > 0 and m € N with m > a;/x, we
have a non-empty set 4,, = {n € N : a, < mz}. Since a, is increasing
sequence, A, is a finite set, and thus we have n,, = max A,, € N. Then, by
definition of A,,, the following holds

an,, <mzr < an,,+1-

Now, we set b, = an,,/m. Then,

m m m m

anp, < Unm+1 - anpy, < 1

|t —bp| =2 — ,

namely, lim b, = x.
On the other hand, h(z) = f(z) — g(x) is a continuous function with
h(bm) = 0. Therefore, by Theorem 11.5A, we have

h(z) = lim h(b,,) = lim 0 = 0,
namely, f(x) = g(x). O



6

6.(10 points, bonus problem) We say that a set S C R is countable if there
exists a sequence {ay },>1 such that S C {a, : n € S}.

An increasing function f(z) is defined for x € (—o0,+00). Let S denote
the set of points where f(x) is discontinuous. Prove that S is countable.

(You may need to use that facts that given any two different real numbers
x < y, there exists a rational number r such that x < r < y. Moreover, the
set Q of rational numbers is countable.)

Proof. First of all, we claim that the left-hand limit of f(z) exist for each
x € R, and it is less than or equal to f(x).

Given 29 € R, {f(zo— %) }nen is an increasing sequence with f(zg—1) <
f(zo). Therefore, there exists a number L such that lim f(zg — 2) = L and
flxo— %) < L < f(xg) by the completeness property and the limit location
theorem.

Then, given € > 0, there exists a large natural number N such that

L — f(zo — +) < e. Thus, given z € (zg — 3, 20) we have
1L~ f(@)| <|L—flzo— N1 <e
namely lim f(z) =L < f(xg).
=T

In the same manner, the right-hand limit of f(x) exist, and it is greater
than or equal to f(x). Namely, lim f(z) < lim+ f(x).

$—>IIZO J)—>Z'0
Therefore, if f(x) is discontinuous at a point x; then
lim f(z) < lim+ f(x),

:1:~>:E1 14).1?1
and thus there exists a rational number r; such that

lim f(z)<r< lim f(x).

T—T] T—x]
Moreover, given another point 1 < xe where f(z) is discontinuous, we have

r1 < lim f(z) < lim f(z) <.
Hence, there exists one-to-one correspondence between S and a subset of
A C Q. Namely, there exists an onto function g: A — S.

On the other hand, the given fact implies that there exists a sequence
{an} such that A C Q C {a, : n € N}. Namely, there exists a subsequence
an; such that A = {a,, : j € N}. So, we have an onto function h : N — A
defined by h(j) = an;. Then, by using the onto function go h : N — S, we
can define a sequence b; as b; = g(h(j)). Then, we have S = {b; : n € N}.
Therefore, S is countable. O



