1. (20 points) Determine whether the following statements are true or false. If true then prove it, and if false then provide a counterexample.
(1) Suppose that the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent. Then, $\left\{\frac{a_{n}}{b_{n}+1}\right\}$ is also convergent.
(2) Suppose that a continuous function $f(x)$ is defined on $(1,+\infty)$. Then, $\lim _{x \rightarrow+\infty} \frac{1}{x} f(x)=0$ holds

Proof for (1). False. Let $a_{n}=-1$ and $b_{n}=-1+\frac{1}{n}$. Then, they converges to -1 . However, $\frac{a_{n}}{b_{n}+1}=-n \rightarrow-\infty$.

Proof for (2). False. $f(x)=x$ is continuous, but $\frac{1}{x} f(x)=1$.
2. (25 points) Let $a_{n+1}=\left(\frac{a_{n}}{2}\right)^{\frac{3}{2}}$ and $0 \leq a_{0}<8$. Prove that the sequence $\left\{a_{n}\right\}$ is convergent, and the limit is 0 .

Proof. We have $a_{1}=\left(a_{0} / 2\right)^{\frac{3}{2}} \geq 0$. Moreover,

$$
\left(a_{1}\right)^{2}=\left(a_{0} / 2\right)^{3}=\left(a_{0}\right)^{2}\left(a_{0} / 8\right)<\left(a_{0}\right)^{2}
$$

yields $a_{1}<a_{0}<8$.
Assume $0 \leq a_{k}<8$ for some $k \in \mathbb{N}$. Then, we have $a_{k+1}=\left(a_{k} / 2\right)^{\frac{3}{2}} \geq 0$. Moreover,

$$
\left(a_{k+1}\right)^{2}=\left(a_{k} / 2\right)^{3}=\left(a_{k}\right)^{2}\left(a_{k} / 8\right)<\left(a_{k}\right)^{2}
$$

yields $a_{k+1}<a_{k}<8$.
Thus, by the mathematical induction, we have $0 \leq a_{n}<a_{0}<8$ for all $n \in \mathbb{N}$ and $a_{n+1}<a_{n}$. Since a_{n} is decreasing and bounded below, a_{n} converges to a limit L by the completeness property. In addition, by the limit location theorem, we have $0 \leq L \leq a_{0}<8$.

Now, by using $\left(a_{n+1}\right)^{2}=\left(a_{n}\right)^{3} / 8$ and Theorem 5.1, we have

$$
L^{2}=\lim \left(a_{n+1}\right)^{2}=\lim \left(a_{n}\right)^{3} / 8=L^{3} / 8
$$

Hence, we have $L^{2}(L-8)=0$, namely $L=0$ or 8 . However, $L \leq a_{0}<8$ implies $L \neq 8$, and thus $L=0$.
3. (25 points) Let $2 a_{n+1}=\frac{1}{1+a_{n}}$ and $a_{0}>0$. Prove that it is convergent, and the limit is $\frac{-1+\sqrt{3}}{2}$.

Proof. We first observe $2 a_{1}=\frac{1}{1+a_{0}}>0$. If $a_{k}>0$ for some $k \in \mathbb{N}$, then $2 a_{k+1}=\frac{1}{1+a_{k}}>0$. So, by the mathematical induction, we have $a_{n}>0$ for all $n \in \mathbb{N}$. Next,

$$
\begin{aligned}
\left|2 a_{n+2}-2 a_{n+1}\right| & =\left|\frac{1}{1+a_{n+1}}-\frac{1}{1+a_{n}}\right|=\left|\frac{a_{n+1}-a_{n}}{\left(1+a_{n+1}\right)\left(1+a_{n}\right)}\right| \\
& =\frac{\left|a_{n+1}-a_{n}\right|}{\left(1+a_{n+1}\right)\left(1+a_{n}\right)}<\left|a_{n+1}-a_{n}\right| .
\end{aligned}
$$

Namely, $\left|a_{n+2}-a_{n+1}\right|<2^{-1}\left|a_{n+1}-a_{n}\right|$. Assume

$$
\left|a_{n+k+1}-a_{n+k}\right|<2^{-k}\left|a_{n+1}-a_{n}\right|
$$

for some $k \in \mathbb{N}$. So, by the mathematical induction, for all $n, m \in \mathbb{N}$

$$
\left|a_{n+m+1}-a_{n+m}\right|<2^{-m}\left|a_{n+1}-a_{n}\right|
$$

Therefore, for $m, n \in \mathbb{N}$ with $m>n$, we have

$$
\begin{aligned}
\left|a_{m}-a_{n}\right| & =\left|\sum_{k=0}^{m-n-1}\left(a_{n+k+1}-a_{n+k}\right)\right| \leq \sum_{k=0}^{m-n-1}\left|a_{n+k+1}-a_{n+k}\right| \\
& \leq \sum_{k=0}^{m-n-1} 2^{-k}\left|a_{n+1}-a_{n}\right|=\left|a_{n+1}-a_{n}\right| \sum_{k=0}^{m-n-1} 2^{-k}
\end{aligned}
$$

Since $\sum 2^{-k}$ is a geometric series, we have

$$
\sum_{k=0}^{m-n-1} 2^{-k}=\frac{1-2^{-(m-n)}}{1-2^{-1}}<\frac{1}{1-2^{-1}}=2
$$

Namely,

$$
\left|a_{m}-a_{n}\right|<2\left|a_{n+1}-a_{n}\right| \leq \frac{2\left|a_{1}-a_{0}\right|}{2^{n}}
$$

Define a constant $M=1+2\left|a_{1}-a_{0}\right|$. Then, $\left|a_{m}-a_{n}\right| \leq \frac{M}{2^{N}}$ for $m, n \geq N$.
Given any $\epsilon>0$, we choose a large natural number $N>\log _{2}(M / \epsilon)$. Then, we have $\left|a_{m}-a_{n}\right|<\epsilon$ for $m, n \geq N$. Namely, a_{n} is a Cauchy sequence, and thus it converges to a limit L.

By using $\frac{1}{2}=a_{n+1}\left(1+a_{n}\right)$ and Theorem 5.1, we have

$$
\frac{1}{2}=\lim a_{n+1}\left(1+a_{n}\right)=\lim a_{n+1}+\left(\lim a_{n+1}\right)\left(\lim a_{n}\right)=L+L^{2}
$$

Hence, solving the quadratic equation yields $L=\frac{-1 \pm \sqrt{3}}{2}$. Since $a_{n}>0$, by the limit location theorem, we have $L \geq 0$. Thus, $L=\frac{-1+\sqrt{3}}{2}$.
4. (10 points) Find the radius of convergence of the power series $\sum_{n=0}^{\infty}(n!) x^{n}$, and explain why.

Proof. Given $x \neq 0$, we define $a_{n}=(n!) x^{n}$. Then, we have

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)!|x|^{n+1}}{(n!)|x|^{n}}=(n+1)|x|>1
$$

for all $n \geq|x|^{-1}$. We choose a natural number N such that $N \geq|x|^{-1}$. Then, for $n>N$ we have

$$
\left|a_{n}\right|=\left|a_{N}\right| \prod_{k=N}^{n-1}\left|\frac{a_{k+1}}{a_{k}}\right| \geq\left|a_{N}\right| \prod_{k=N}^{n-1} 1=\left|a_{N}\right|>0
$$

namely a_{n} can NOT converge to 0 . Hence, by the test for divergence, a_{n} diverges.

On the other hand, if $x=0$ the power series clearly converges to 0 . Thus, the radius of convergence is 0 .
5. (20 points) Continuous functions $f(x)$ and $g(x)$ are defined for $x \in$ $(0,+\infty)$. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a positive increasing sequence tending to $+\infty$ with $a_{n+1} \leq a_{n}+1$. Suppose that

$$
f\left(a_{n} / m\right)=g\left(a_{n} / m\right)
$$

holds for all natural numbers $n, m \in \mathbb{N}$. Then, Prove that $f(x)=g(x)$ holds for all $x \in \mathbb{R}$.

Proof. Since a_{n} tends to $+\infty$, given $x>0$ and $m \in \mathbb{N}$ with $m \geq a_{1} / x$, we have a non-empty set $A_{m}=\left\{n \in \mathbb{N}: a_{n} \leq m x\right\}$. Since a_{n} is increasing sequence, A_{m} is a finite set, and thus we have $n_{m}=\max A_{m} \in \mathbb{N}$. Then, by definition of A_{m}, the following holds

$$
a_{n_{m}} \leq m x<a_{n_{m}+1}
$$

Now, we set $b_{m}=a_{n_{m}} / m$. Then,

$$
\left|x-b_{m}\right|=x-\frac{a_{n_{m}}}{m} \leq \frac{a_{n_{m}+1}}{m}-\frac{a_{n_{m}}}{m} \leq \frac{1}{m}
$$

namely, $\lim b_{m}=x$.
On the other hand, $h(x)=f(x)-g(x)$ is a continuous function with $h\left(b_{m}\right)=0$. Therefore, by Theorem 11.5A, we have

$$
h(x)=\lim h\left(b_{m}\right)=\lim 0=0,
$$

namely, $f(x)=g(x)$.
6.(10 points, bonus problem) We say that a set $S \subset \mathbb{R}$ is countable if there exists a sequence $\left\{a_{n}\right\}_{n \geq 1}$ such that $S \subset\left\{a_{n}: n \in S\right\}$.

An increasing function $f(x)$ is defined for $x \in(-\infty,+\infty)$. Let S denote the set of points where $f(x)$ is discontinuous. Prove that S is countable.
(You may need to use that facts that given any two different real numbers $x<y$, there exists a rational number r such that $x<r<y$. Moreover, the set \mathbb{Q} of rational numbers is countable.)

Proof. First of all, we claim that the left-hand limit of $f(x)$ exist for each $x \in \mathbb{R}$, and it is less than or equal to $f(x)$.

Given $x_{0} \in \mathbb{R},\left\{f\left(x_{0}-\frac{1}{n}\right)\right\}_{n \in \mathbb{N}}$ is an increasing sequence with $f\left(x_{0}-\frac{1}{n}\right) \leq$ $f\left(x_{0}\right)$. Therefore, there exists a number L such that $\lim f\left(x_{0}-\frac{1}{n}\right)=L$ and $f\left(x_{0}-\frac{1}{n}\right) \leq L \leq f\left(x_{0}\right)$ by the completeness property and the limit location theorem.

Then, given $\epsilon>0$, there exists a large natural number N such that $L-f\left(x_{0}-\frac{1}{N}\right)<\epsilon$. Thus, given $x \in\left(x_{0}-\frac{1}{N}, x_{0}\right)$ we have

$$
|L-f(x)| \leq\left|L-f\left(x_{0}-N^{-1}\right)\right|<\epsilon
$$

namely $\lim _{x \rightarrow x_{0}^{-}} f(x)=L \leq f\left(x_{0}\right)$.
In the same manner, the right-hand limit of $f(x)$ exist, and it is greater than or equal to $f(x)$. Namely, $\lim _{x \rightarrow x_{0}^{-}} f(x) \leq \lim _{x \rightarrow x_{0}^{+}} f(x)$.

Therefore, if $f(x)$ is discontinuous at a point x_{1} then

$$
\lim _{x \rightarrow x_{1}^{-}} f(x)<\lim _{x \rightarrow x_{1}^{+}} f(x)
$$

and thus there exists a rational number r_{1} such that

$$
\lim _{x \rightarrow x_{1}^{-}} f(x)<r<\lim _{x \rightarrow x_{1}^{+}} f(x)
$$

Moreover, given another point $x_{1}<x_{2}$ where $f(x)$ is discontinuous, we have

$$
r_{1}<\lim _{x \rightarrow x_{1}^{+}} f(x) \leq \lim _{x \rightarrow x_{1}^{-}} f(x)<r_{2}
$$

Hence, there exists one-to-one correspondence between S and a subset of $A \subset \mathbb{Q}$. Namely, there exists an onto function $g: A \rightarrow S$.

On the other hand, the given fact implies that there exists a sequence $\left\{a_{n}\right\}$ such that $A \subset \mathbb{Q} \subset\left\{a_{n}: n \in \mathbb{N}\right\}$. Namely, there exists a subsequence $a_{n_{j}}$ such that $A=\left\{a_{n_{j}}: j \in \mathbb{N}\right\}$. So, we have an onto function $h: \mathbb{N} \rightarrow A$ defined by $h(j)=a_{n_{j}}$. Then, by using the onto function $g \circ h: \mathbb{N} \rightarrow S$, we can define a sequence b_{j} as $b_{j}=g(h(j))$. Then, we have $S=\left\{b_{j}: n \in \mathbb{N}\right\}$. Therefore, S is countable.

