
1. (20 points) Determine whether the following statements are true or false.
If true then prove it, and if false then provide a counterexample.

(1) Suppose that the sequences {an} and {bn} are convergent. Then,
{ an
bn + 1

}
is also convergent.

(2) Suppose that a continuous function f(x) is defined on (1,+∞). Then,

lim
x→+∞

1

x
f(x) = 0 holds.

Proof for (1). False. Let an = −1 and bn = −1 + 1
n . Then, they converges

to −1. However, an
bn+1 = −n→ −∞. �

Proof for (2). False. f(x) = x is continuous, but 1
xf(x) = 1. �
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2. (25 points) Let an+1 =
(
an
2

) 3
2 and 0 ≤ a0 < 8. Prove that the sequence

{an} is convergent, and the limit is 0.

Proof. We have a1 = (a0/2)
3
2 ≥ 0. Moreover,

(a1)
2 = (a0/2)3 = (a0)

2(a0/8) < (a0)
2,

yields a1 < a0 < 8.

Assume 0 ≤ ak < 8 for some k ∈ N. Then, we have ak+1 = (ak/2)
3
2 ≥ 0.

Moreover,

(ak+1)
2 = (ak/2)3 = (ak)2(ak/8) < (ak)2,

yields ak+1 < ak < 8.

Thus, by the mathematical induction, we have 0 ≤ an < a0 < 8 for
all n ∈ N and an+1 < an. Since an is decreasing and bounded below, an
converges to a limit L by the completeness property. In addition, by the
limit location theorem, we have 0 ≤ L ≤ a0 < 8.

Now, by using (an+1)
2 = (an)3/8 and Theorem 5.1, we have

L2 = lim(an+1)
2 = lim(an)3/8 = L3/8.

Hence, we have L2(L − 8) = 0, namely L = 0 or 8. However, L ≤ a0 < 8
implies L 6= 8, and thus L = 0.
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3. (25 points) Let 2an+1 =
1

1 + an
and a0 > 0. Prove that it is convergent,

and the limit is
−1 +

√
3

2
.

Proof. We first observe 2a1 = 1
1+a0

> 0. If ak > 0 for some k ∈ N, then

2ak+1 = 1
1+ak

> 0. So, by the mathematical induction, we have an > 0 for

all n ∈ N. Next,

|2an+2 − 2an+1| =
∣∣∣ 1

1 + an+1
− 1

1 + an

∣∣∣ =
∣∣∣ an+1 − an
(1 + an+1)(1 + an)

∣∣∣
=

|an+1 − an|
(1 + an+1)(1 + an)

< |an+1 − an|.

Namely, |an+2 − an+1| < 2−1|an+1 − an|. Assume

|an+k+1 − an+k| < 2−k|an+1 − an|
for some k ∈ N. So, by the mathematical induction, for all n,m ∈ N

|an+m+1 − an+m| < 2−m|an+1 − an|.
Therefore, for m,n ∈ N with m > n, we have

|am − an| =
∣∣∣m−n−1∑

k=0

(an+k+1 − an+k)
∣∣∣ ≤ m−n−1∑

k=0

|an+k+1 − an+k|

≤
m−n−1∑
k=0

2−k|an+1 − an| = |an+1 − an|
m−n−1∑
k=0

2−k.

Since
∑

2−k is a geometric series, we have

m−n−1∑
k=0

2−k =
1− 2−(m−n)

1− 2−1
<

1

1− 2−1
= 2.

Namely,

|am − an| < 2|an+1 − an| ≤
2|a1 − a0|

2n
.

Define a constant M = 1 + 2|a1 − a0|. Then, |am − an| ≤ M
2N

for m,n ≥ N .
Given any ε > 0, we choose a large natural number N > log2(M/ε). Then,

we have |am − an| < ε for m,n ≥ N . Namely, an is a Cauchy sequence, and
thus it converges to a limit L.

By using 1
2 = an+1(1 + an) and Theorem 5.1, we have

1

2
= lim an+1(1 + an) = lim an+1 + (lim an+1)(lim an) = L+ L2.

Hence, solving the quadratic equation yields L = −1±
√
3

2 . Since an > 0, by

the limit location theorem, we have L ≥ 0. Thus, L = −1+
√
3

2 .
�
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4. (10 points) Find the radius of convergence of the power series
∞∑
n=0

(n!)xn,

and explain why.

Proof. Given x 6= 0, we define an = (n!)xn. Then, we have∣∣∣an+1

an

∣∣∣ =
(n+ 1)!|x|n+1

(n!)|x|n
= (n+ 1)|x| > 1,

for all n ≥ |x|−1. We choose a natural number N such that N ≥ |x|−1.
Then, for n > N we have

|an| = |aN |
n−1∏
k=N

∣∣∣ak+1

ak

∣∣∣ ≥ |aN | n−1∏
k=N

1 = |aN | > 0,

namely an can NOT converge to 0. Hence, by the test for divergence, an
diverges.

On the other hand, if x = 0 the power series clearly converges to 0. Thus,
the radius of convergence is 0. �
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5. (20 points) Continuous functions f(x) and g(x) are defined for x ∈
(0,+∞). Let {an}n≥1 be a positive increasing sequence tending to +∞
with an+1 ≤ an + 1. Suppose that

f(an/m) = g(an/m)

holds for all natural numbers n,m ∈ N. Then, Prove that f(x) = g(x) holds
for all x ∈ R.

Proof. Since an tends to +∞, given x > 0 and m ∈ N with m ≥ a1/x, we
have a non-empty set Am = {n ∈ N : an ≤ mx}. Since an is increasing
sequence, Am is a finite set, and thus we have nm = maxAm ∈ N. Then, by
definition of Am, the following holds

anm ≤ mx < anm+1.

Now, we set bm = anm/m. Then,

|x− bm| = x− anm

m
≤ anm+1

m
− anm

m
≤ 1

m
,

namely, lim bm = x.
On the other hand, h(x) = f(x) − g(x) is a continuous function with

h(bm) = 0. Therefore, by Theorem 11.5A, we have

h(x) = limh(bm) = lim 0 = 0,

namely, f(x) = g(x). �



6

6.(10 points, bonus problem) We say that a set S ⊂ R is countable if there
exists a sequence {an}n≥1 such that S ⊂ {an : n ∈ S}.

An increasing function f(x) is defined for x ∈ (−∞,+∞). Let S denote
the set of points where f(x) is discontinuous. Prove that S is countable.

(You may need to use that facts that given any two different real numbers
x < y, there exists a rational number r such that x < r < y. Moreover, the
set Q of rational numbers is countable.)

Proof. First of all, we claim that the left-hand limit of f(x) exist for each
x ∈ R, and it is less than or equal to f(x).

Given x0 ∈ R, {f(x0− 1
n)}n∈N is an increasing sequence with f(x0− 1

n) ≤
f(x0). Therefore, there exists a number L such that lim f(x0 − 1

n) = L and

f(x0− 1
n) ≤ L ≤ f(x0) by the completeness property and the limit location

theorem.
Then, given ε > 0, there exists a large natural number N such that

L− f(x0 − 1
N ) < ε. Thus, given x ∈ (x0 − 1

N , x0) we have

|L− f(x)| ≤ |L− f(x0 −N−1)| < ε,

namely lim
x→x−

0

f(x) = L ≤ f(x0).

In the same manner, the right-hand limit of f(x) exist, and it is greater
than or equal to f(x). Namely, lim

x→x−
0

f(x) ≤ lim
x→x+

0

f(x).

Therefore, if f(x) is discontinuous at a point x1 then

lim
x→x−

1

f(x) < lim
x→x+

1

f(x),

and thus there exists a rational number r1 such that

lim
x→x−

1

f(x) < r < lim
x→x+

1

f(x).

Moreover, given another point x1 < x2 where f(x) is discontinuous, we have

r1 < lim
x→x+

1

f(x) ≤ lim
x→x−

1

f(x) < r2.

Hence, there exists one-to-one correspondence between S and a subset of
A ⊂ Q. Namely, there exists an onto function g : A→ S.

On the other hand, the given fact implies that there exists a sequence
{an} such that A ⊂ Q ⊂ {an : n ∈ N}. Namely, there exists a subsequence
anj such that A = {anj : j ∈ N}. So, we have an onto function h : N → A
defined by h(j) = anj . Then, by using the onto function g ◦ h : N → S, we
can define a sequence bj as bj = g(h(j)). Then, we have S = {bj : n ∈ N}.
Therefore, S is countable. �


